Preface
This book was written during the first half of 1971. Before arrangements for its publication had been completed, however, an independent controversy sprang up in the Listener, in which reference was made to the correspondence in that journal which is discussed in the following pages (83-87). This seemed to afford a possibility of achieving the desired end without the necessity of revealing the much fuller story told here: accordingly I withheld the typescript and gave, in the Listener of 23 September 1971, a brief account of the sequel to the former controversy. The result was another long series of letters, extending from the issue of 30 September 1971 to that of 13 January 1972, which inspired, among other things, an article by Mr Bernard Levin in The Times of 21 December 1971, which itself led to a brief correspondence in The Times.
The general interest thus brought to light, as I know from my subsequent correspondence from various parts of the world, was great and widespread, but the one essential desideratum of the whole exercise - plain evidence, through an answer to, or acceptance of, a very simple refutation of the immeasurably important special relativity theory, that the obligation to preserve strict integrity in science continues to be honoured - was still not forthcoming. Physical research, both theoretical and practical, still proceeds as though special relativity were unquestioned. There remains, therefore, no alternative to publication of the facts here recorded.
It is impossible in a brief space satisfactorily to summarise the whole of this latest phase of the matter, nor is it necessary, for the journals concerned may be consulted by interested readers, and on the one vital point no progress is made; the criticism remains unanswered and unaccepted, and its implications are unchanged. It will, however, serve to authenticate this statement, and at the same time introduce the reader at once to the central source of the book, if I reproduce the final letters, in The Times of 8 and 26 January 1972, respectively - the first from Professor R. A. Lyttleton, F.R.S., of St John's College, Cambridge, and the second my reply - and simply add that Professor Lyttleton has not responded, either privately or publicly, to my appeal to him for the one brief statement that would settle the whole matter. Lyttleton wrote as follows:
My old friend Dr. Dingle seems at last to have found in Bernard Levin (article, December 21)
In brief, what Dingle has steadfastly maintained these many years against all comers is this: That if Peter and Paul are identical twins, and Paul goes on a journey leaving Peter to stay at home, then when Paul returns he will still be exactly the same age as his brother.
The truth of this seems so self-evident as to be beyond need of discussion by any sane people. But the trouble is that it is false, and physical theory shows inescapably that Paul will arrive back having aged less than Peter. For ordinary everyday speeds the difference is negligibly small, and it rises to importance only when velocities begin to become comparable with that of light, but such speeds are now common in much of physics.
The kinematics and mechanics (of special relativity) that hold for high-speed motions had their inception in the inspired genius of Poincare (Henri) and Einstein and others of their day, and the suggestion that such men, never mind modern exponents of theoretical physics, do not know what they are talking about is on a par with claiming that Vardon and Taylor and Hagen knew nothing of golf. But this so-called 'clock paradox' (it is not really a parodox at all) is built for friend Dingle, since the man-in-the-street does not have to deal with relativistic particles such as mu-mesons, or the design of synchrotrons, and so along with Mr. Levin can remain absolutely certain that Dingle must be right
wielding his prolix pen 'while words of learned, length and thundering sound, amaze the gazing rustics gathered round.'Dr Dingle's attitude is of a golfing enthusiastic that has read the great masters, but finding himself unable to break 100 (never mind break 70) concludes it is they that must be wrong somewhere; and what is more, that it is their bounded duty to interrupt their careers to prove to his satisfaction that they are right.
If your energetic Bernard would spend a little time learning up this branch of physics, which is not really all that difficult, he can easily discover for himself who is right and who is wrong, but he will discover also that it is not possible to convince our dear Dingle, For e'en though vanquished, he can argue still,' - and will!
My reply was this:
My old (in affection, not alas in wisdom) friend Professor Lyttleton (January 8) has got everything wrong - even the point at issue. I have carefully avoided the 'clock', or 'twin', paradox (in which Paul, after space-travelling, rejoins Peter), knowing from experience that Paul's reversal of motion can be misused ad lib, to meet any need. In the present discussion Paul moves on, undeviating, into the intense inane.
Suppose clocks A and B move along the same straight line at uniform speeds differing by 161,000 miles a second: we call A 'stationary' and B 'moving', but that is merely nominal. At the instant at which B passes A both read noon. Then, according to special relativity, at the instants when B reads 1 and 2 o'clock, A reads 2 and 4 o'clock respectively. Of course, A is not at B to allow a direct comparison, but Einstein's theory is based on a particular process for finding a clock-reading for a distant event, and it demands these values. Einstein himself made just this calculation, but using general symbols instead of these numerical values, and concluded that since B recorded a smaller interval than A between the same events, it was working more slowly.
But if he had similarly calculated the reading of B (still 'moving') for the readings 1 and 2 o'clock of A (still 'stationary') he would have got 2 and 4 o'clock respectively, and must have reached the opposite conclusion: he did not do this, so missed the contradiction. I invite Ray to fault these calculations, or convince your 'gazing rushes' that each of two clocks can work faster than the other. I do hope he will not disappoint them.
Regarding the immeasurably less important clock paradox, Lyttleton is again wrong in saying that I have denied asymmetrical ageing for many years. Fifteen years ago, when I believed special relativity true, I indeed thought it impossible, but I soon discovered my error, and for more than 13 years have held the question open. Had we but world enough and time, or wings as swift as meditation or the thoughts of love (since I too like invoking the English, and even the Irish, poets), we could indeed make a direct test: as it is, we must await a valid determination of the true relation between the velocity of light and that of its source.
Despite the mu-mesons and their kind, I think asymmetrical ageing extremely unlikely, but that is an opinion; the falsity of the special relativity theory (not necessarily of the relativity of motion) I regard as proved.It is clear from this that, notwithstanding many years of reiteration of what my letter shows to be a simple, generally intelligible Ч but, if valid, fatal Ч criticism of the most fundamental theory of modern physics, the ultimate reaction, coming from an eminent mathematical physicist or astronomer, is simply a paraphrase of what this book will show to have been every other supposedly authoritative response during that long time - namely, first an evasion of the point by its transformation into something different, for the refutation of which justification is claimed on grounds too abstruse for general presentation; and secondly, complete silence when the transformation is exposed and an answer to the genuine, easily understandable, criticism requested.
The function of this book is to provide conclusive evidence of this, and so to enlighten the public on a matter of the most profound concern to its moral and physical welfare.It remains to summarise the necessity for this exposure, which of course is elaborated in the following pages. This necessity is twofold. First, the facts show, I think beyond question, that the traditional proud claim of Science that it acknowledges the absolute authority of experience (i.e. observation and experiment) and reason over all theories, hypotheses, prejudices, expectations or probabilities, however apparently firmly established, can no longer be upheld.
The devotion to truth at all costs has gradually given place - largely unconsciously, I believe, but still undeniably Ч to the blind pursuit of the superficially plausible; the direction towards the most seductive, in which advance has been easiest, has been taken without regard to preservation of contact with the base, which is the truth of experience and reason; the verdict of those authorities falls on deaf ears, that of the Vardons or Hagens of physics, to question which is automatically to place oneself in a class which Lyttleton's letter makes starkly clear, having now established itself as final; mathematics has been transformed from the servant of experience into its master, and instead of enabling the full implications and potentialities of the facts of experience to be realised and amplified, it has been held necessarily to symbolise truths which are in fact) sheer impossibilities but are presented to the layman as discoveries) which, though they appear to him absurd, are nevertheless true because mathematical inventions, which he cannot understand require them. The situation is precisely equivalent to that in which the zoologist assured the astonished spectator of the giraffe that if he understood anatomy he would know that such a creature was impossible - except that, in physical science, the layman usually believes what he is told and, unless he is enlightened in time, will be the victim of the consequences. This phenomenon, most evident in relation to special relativity, is now common in physical science, especially in cosmology, but its culminating point lay, I think, in the acceptance of special relativity, and it is with that alone that the present discussion is concerned. It is ironical that, in the very field in which Science has claimed superiority to Theology, for example - in the abandoning of dogma and the granting of absolute freedom to criticism - the positions are now reversed. Science will not tolerate criticism of special relativity, while Theology talks freely about the death of God, religionless Christianity, and so on (on which I make no comment whatever). Unless scientists can be awakened to the situation into which they have lapsed, the future of science and civilisation is black indeed.The second reason for the publication of this book is a practical one. Directly or indirectly - at present chiefly the latter, though none the less inseparably - special relativity is involved in all modern physical experiments, and these are known to be attended by such dangerous possibilities, should something go wrong with them, that the duty of ensuring as far as possible that this shall not happen is imperative. It is certain that, sooner or later, experiments based on false theories will have unexpected results, and these, in the experiments of the present day, may be harmless or incalculably disastrous. In these circumstances an inescapable obligation is laid on experimental physicists to subject their theories to the most stringent criticism. As this book will show, their general practice is to leave such criticism to mathematical theorists who either evade or ignore it, and the possible consequences are evident and unspeakably menacing. This alone would compel the publication of the facts here revealed.
Nothing, I think, remains to be said to enable the reader to form his own estimate of the story that follows, which he requires no special knowledge to enable him to do. My duty is to make it known; its significance is for him to judge.
April 1972